5G-NR物理信道与调制-上行链路v1.0.0

上接《NR物理信道与调制》上行链路

上行链路

概述

物理信道概述


上行链路物理信道对应于一组资源元素(REs)的集合,用于承载源自高层的信息。本规范定义了如下上行信道:

  • 物理上行共享信道(PUSCH)
  • 物理上行控制信道(PUCCH)
  • 物理随机接入信道(PRACH)

物理信号概述


上行物理信号是物理层使用的但不承载任何来自高层信息的信号。本规范定义了如下上行物理信号:

  • 解调参考信号(Demodulation reference signals,DM-RS)
  • 相位跟踪参考信号(Phase-tracking reference signals,PT-RS)
  • 探测参考信号(Sounding reference signal,SRS)

物理资源


本规范定义了下列用于上行链路的天线端口:

  • Antenna ports starting with 1000 for DM-RS associated with PUSCH
  • Antenna ports starting with 2000 for DM-RS associated with PUCCH
  • Antenna ports starting with 3000 for SRS
  • Antenna port 4000 for PRACH

物理信道

物理上行共享信道

加扰


对于每个码字\(q\),比特块\({ {b}^{(q)}}(0),...,{ {b}^{(q)}}(M_{\text{bit}}^{(q)}-1)\)应当在调制前被加扰,其中\(M_{\text{bit}}^{(q)}\)是在物理信道上传输的码字\(q\)的比特数,加扰后的比特块为\({ {\tilde{b}}^{(q)}}(0),...,{ {\tilde{b}}^{(q)}}(M_{\text{bit}}^{\text{(q)}}-1)\)。根据如下公式进行加扰

\[{ {\tilde{b}}^{(q)}}(i)=\left( { {b}^{(q)}}(i)+{ {c}^{(q)}}(i) \right)\bmod 2\]

其中加扰序列\({ {c}^{(q)}}(i)\)由2.2节中给定。

注:RAN1还没有正式同意PUSCH加扰部分的内容,3.3.1.1和3.3.1.2节可能需要重新调整。

调制


对于每个码字\(q\),加扰比特块\({ {\tilde{b}}^{(q)}}(0),...,{ {\tilde{b}}^{(q)}}(M_{\text{bit}}^{\text{(q)}}-1)\)根据Table 6.3.1.2-1中的调制方式进行调制,具体调制方法见2.1节,得到复值调制符号块\({ {d}^{(q)}}(0),...,{ {d}^{(q)}}(M_{\text{symb}}^{\text{(q)}}-1)\)

mark

层映射


每个码字的复值调制符号根据Table 7.3.1.3-1最多映射到4个层。码字\(q\) 的复值调制符号\({ {d}^{(q)}}(0),...,{ {d}^{(q)}}(M_{\text{symb}}^{\text{(q)}}-1)\)被映射到层\(x(i)={ {\left[ \begin{matrix} { {x}^{(0)}}(i) & ... & { {x}^{(\upsilon -1)}}(i) \\ \end{matrix} \right]}^{T}}\)\(i=0,1,...,M_{\text{symb}}^{\text{layer}}-1\),其中$\(是层数,\)M_{}^{}$是每层的调制符号数。

变换预编码


如果变换预编码(transform precoding)不可用,对于层\(\lambda =0,1,...,\upsilon -1\)\({ {y}^{(\lambda )}}(i)={ {x}^{(\lambda )}}(i)\)

如果变换预编码可用,\(\upsilon =1\)且复值符号块\({ {x}^{(0)}}(0),...,{ {x}^{(0)}}(M_{\text{symb}}^{\text{layer}}-1)\)对于单层\(\lambda =0\)被分为\({M_{\text{symb}}^{\text{layer}}}/{M_{\text{sc}}^{\text{PUSCH}}}\;\)个集合,每个集合对应于一个OFDM符号。变换预编码根据如下公式进行

\[ \begin{align} \nonumber & { {y}^{(0)}}(l\cdot M_{\text{sc}}^{\text{PUSCH}}+k)=\frac{1}{\sqrt{M_{\text{sc}}^{\text{PUSCH}}}}\sum\limits_{i=0}^{M_{\text{sc}}^{\text{PUSCH}}-1}{ { {x}^{(0)}}(l\cdot M_{\text{sc}}^{\text{PUSCH}}+i){ {e}^{-j\frac{2\pi ik}{M_{\text{sc}}^{\text{PUSCH}}}}}} \\ \nonumber & k=0,...,M_{\text{sc}}^{\text{PUSCH}}-1 \\ \nonumber & l=0,...,{M_{\text{symb}}^{\text{layer}}}/{M_{\text{sc}}^{\text{PUSCH}}}\;-1 \end{align}\]

得到复值符号块\({ {y}^{(0)}}(0),...,{ {y}^{(0)}}(M_{\text{symb}}^{\text{layer}}-1)\)\(M_{\text{sc}}^{\text{PUSCH}}=M_{\text{RB}}^{\text{PUSCH}}\cdot N_{\text{sc}}^{\text{RB}}\),其中\(M_{\text{RB}}^{\text{PUSCH}}\)表示PUSCH就RB而言的带宽,并且满足

\[M_{\text{RB}}^{\text{PUSCH}}={ {2}^{ { {\alpha }_{2}}}}\cdot { {3}^{ { {\alpha }_{3}}}}\cdot { {5}^{ { {\alpha }_{5}}}}\le N_{\text{RB}}^{\text{UL}}\]

其中\({ {\alpha }_{2}},{ {\alpha }_{3}},{ {\alpha }_{5}}\)是非负整数集合。

预编码


根据如下公式对向量块\({ {\left[ \begin{matrix} { {y}^{(0)}}(i) & ... & { {y}^{(\upsilon -1)}}(i) \\ \end{matrix} \right]}^{T}}\)\(i=0,1,...,M_{\text{symb}}^{\text{layer}}-1\)进行预编码

\[\left[ \begin{matrix} { {z}^{(0)}}(i) \\ \vdots \\ { {z}^{(P-1)}}(i) \\ \end{matrix} \right]=W\left[ \begin{matrix} { {y}^{(0)}}(i) \\ \vdots \\ { {y}^{(\upsilon -1)}}(i) \\ \end{matrix} \right]\]

其中\(i=0,1,...,M_{\text{symb}}^{\text{ap}}-1\)\(M_{\text{symb}}^{\text{ap}}=M_{\text{symb}}^{\text{layer}}\)

对基于非码本的传输,预编码矩阵\(W\)在TS 38.214规范中得到。

对基于码本的传输,预编码矩阵\(W\)由Table 6.3.1.5-1给定,其中TPMI索引由调度上行传输的DCI中获得。

mark

映射到物理资源


为满足TS 38.213规范对PUSCH传输功率\({ {P}_{\text{PUSCH}}}\)的要求,对于PUSCH传输所使用的每个天线端口,复值符号块\({ {z}^{(p)}}(0),...,{ {z}^{(p)}}(M_{\text{symb}}^{\text{ap}}-1)\)应当乘以一个幅值因子\({ {\beta }_{\text{PUSCH}}}\),然后从\({ {z}^{(p)}}(0)\)开始依次映射到RE \({ {\left( k,l \right)}_{p,\mu }}\)上,并且RE满足如下条件:

  • 它们位于用于传输所分配的资源中,且
  • 它们不用于DM-RS相关的传输
  • they are not in the OFDM symbols used for transmission of the associated DM-RS in case of transform precoding not enabled.

If transform precoding is not enabled, the mapping to resource elements \({ {\left( k,l \right)}_{p,\mu }}\) not reserved for other purposes shall be in increasing order of first the antenna port index \(p\), then the index \(k\) over the assigned physical resource blocks, and then the index \(l\), starting with \(l={ {l}_{0}}\).(注: \({ {l}_{0}}\) is the start of UL transmission. Need some reference to 213/214)

物理上行控制信道


PUCCH支持多种格式,如Table 6.3.2-1所示。对于单个UE,支持采用格式0或格式2的2个PUCCH同时传输,或支持采用格式1或格式3的其中一个PUCCH与采用格式0或格式2的其中一个PUCCH同时传输。

mark

PUCCH格式0

序列选择


定义一组序列\(\left\{ \begin{matrix} { {x}_{0}}(n) & { {x}_{1}}(n) & { {x}_{2}}(n) & { {x}_{3}}(n) \\ \end{matrix} \right\}\),每组序列长度为12。

比特块\(b(0),...,b({ {M}_{\text{bit}}}-1)\)其中\({ {M}_{\text{bit}}}\in \left\{ 1,2 \right\}\)是PUCCH传输的比特数,根据下式选择序列

\[\begin{align} \nonumber & y(n)={ {x}_{j}}(n) \\ \nonumber & j=\sum\nolimits_{i=0}^{ { {M}_{\text{bit}}}-1}{b(i)\cdot { {2}^{i}}} \end{align}\]

映射到资源元素


为满足TS 38.213规范对PUCCH传输功率\({ {P}_{\text{PUCCH,0}}}\)的要求,序列\(y(n)\)应当乘以一个幅值因子\({ {\beta }_{\text{PUCCH,0}}}\)。在天线端口\(p=2000\),先按\(k\),再按\(l\)的递增顺序从\(y(0)\)开始映射到RE \({ {\left( k,l \right)}_{p,\mu }}\)

PUCCH格式1

序列调制


比特块\(b(0),...,b({ {M}_{\text{bit}}}-1)\)按照2.1节所述的方法进行调制,若\({ {M}_{\text{bit}}}=1\),则使用BPSK,若\({ {M}_{\text{bit}}}=2\),则使用QPSK,得到一个复值符号\(d(0)\)

复值符号\(d(0)\)应根据下式乘以一个序列\(r_{u,v}^{({ {\alpha }_{p}})}(n)\)

\[{ {y}^{(p)}}(n)=d(0)\cdot r_{u,v}^{({ {\alpha }_{p}})}(n),\text{ }n=0,1,...,N_{\text{seq}}^{\text{PUCCH}}-1\]

复值符号\({ {y}^{(p)}}(0),...,{ {y}^{(p)}}(N_{\text{seq}}^{\text{PUCCH}}-1)\)应根据下式采用正交序列\({ {w}_{n_{\text{oc}}^{\text{(}p\text{)}}}}(i)\)进行块扩展(block-wise spread)

\[{ {z}^{(p)}}\left( m\cdot N_{\text{seq}}^{\text{PUCCH}}+n \right)={ {w}_{n_{\text{oc}}^{\text{(}p\text{)}}}}(m)\cdot { {y}^{(p)}}\left( n \right)\]

其中

\[\begin{align} \nonumber & m=0,...,N_{\text{SF}}^{\text{PUCCH}}-1 \\ \nonumber & n=0,...,N_{\text{seq}}^{\text{PUCCH}}-1 \\ \end{align}\]

映射到物理资源


为满足TS 38.213规范对PUCCH传输功率\({ {P}_{\text{PUCCH,1}}}\)的要求,序列\({ {z}^{(p)}}(n)\)应当乘以一个幅值因子\({ {\beta }_{\text{PUCCH,1}}}\),序列从\({ {z}^{(p)}}(0)\)开始映射到RE \({ {\left( k,l \right)}_{p,\mu }}\),RE满足下列所有条件:

  • 它们位于用于传输的RB中,
  • 它们不用于DM-RS相关的传输

The mapping to resource elements \({ {\left( k,l \right)}_{p,\mu }}\) not reserved for other purposes shall be in increasing order of first the index \(k\) over the assigned physical resource blocks, and then the index \(l\).

PUCCH格式2

PUCCH格式3

PUCCH格式4

物理随机接入信道

序列生成


随机接入前导\({ {x}_{u,v}}(n)\)应根据下式生成

\[\begin{align} \nonumber & { {x}_{u,v}}(n)={ {x}_{u}}((n+{ {C}_{v}})\bmod { {L}_{\text{RA}}}) \\ \nonumber & { {x}_{u}}(i)={ {e}^{-j\frac{\pi ui(i+1)}{ { {L}_{\text{RA}}}}}},i=0,1,...,{ {L}_{\text{RA}}}-1 \end{align}\]

频域符号表示应根据下式生成

\[{ {y}_{u,v}}(n)=\sum\limits_{m=0}^{ { {L}_{\text{RA}}}-1}{ { {x}_{u,v}}(m)\cdot { {e}^{-j\frac{2\pi mn}{ { {L}_{\text{RA}}}}}}}\]

其中\({ {L}_{\text{RA}}}=839\)\({ {L}_{\text{RA}}}=[127or139]\)根据前导格式确定,前导格式由Tables 6.3.3.1-1和6.3.3.1-2给定。

循环移位\({ {C}_{v}}\)给定为

\[\begin{align} \nonumber & C{}_{v}=\left\{ \begin{array}{*{35}{l}} v{ {N}_{\text{CS}}} & \text{v}=\text{0,1,}...\text{,}\left\lfloor { { {L}_{\text{RA}}}}/{ { {N}_{\text{CS}}}}\; \right\rfloor -1,{ {N}_{\text{CS}}}\ne 0 & \text{for unrestricted sets} \\ \text{0} & { {N}_{\text{CS}}}=0 & \text{for unrestricted sets} \\ { {d}_{\text{start}}}\left\lfloor {v}/{n_{\text{shift}}^{\text{RA}}}\; \right\rfloor +\left( v\bmod n_{\text{shift}}^{\text{RA}} \right){ {N}_{\text{CS}}} & v=0,1,...,w-1 & \text{for restricted sets type A and B} \\ { { {\bar{\bar{d}}}}_{\text{start}}}+\left( v-w \right){ {N}_{\text{CS}}} & v=w,...,w+\bar{\bar{n}}_{\text{shift}}^{\text{RA}}-1 & \text{for restricted sets type B} \\ { { {\bar{\bar{\bar{d}}}}}_{\text{start}}}+\left( v-w-\bar{\bar{n}}_{\text{shift}}^{\text{RA}} \right){ {N}_{\text{CS}}} & v=w+\bar{\bar{n}}_{\text{shift}}^{\text{RA}},...,w+\bar{\bar{n}}_{\text{shift}}^{\text{RA}}+\bar{\bar{\bar{n}}}_{\text{shift}}^{\text{RA}}-1 & \text{for restricted sets type B} \\ \end{array} \right. \\ \nonumber & w=n_{\text{shift}}^{\text{RA}}n_{\text{group}}^{\text{RA}}+\bar{n}_{\text{shift}}^{\text{RA}} \end{align}\]

其中\({ {N}_{\text{CS}}}\)在Table 6.3.3.1-3中给定,高层参数restrictedSetConfig决定了受限集合的类型,6.3.3.1-1和6.3.3.1-2指示了对不同前导格式的受限集合的类型。

变量\({ {d}_{u}}\)给定为

\[{ {d}_{u}}=\left\{ \begin{array}{*{35}{l}} q & 0\le q<{ { {L}_{\text{RA}}}}/{2}\; \\ { {L}_{\text{RA}}}-q & \text{otherwise} \\ \end{array} \right.\]

其中\(q\)是满足\(\left( qu \right)\bmod { {L}_{\text{RA}}}=1\)的最小非负整数。循环移位的受限集合参数依赖于\({ {d}_{u}}\)

  • 对于${ {N}{}}<{ { {L}{}}}/{3}; $

\[ \begin{align} \nonumber & n_{\text{shift}}^{\text{RA}}=\left\lfloor { { {d}_{u}}}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & { {d}_{\text{start}}}=2{ {d}_{u}}+n_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & n_{\text{group}}^{\text{RA}}=\left\lfloor { { {L}_{\text{RA}}}}/{ { {d}_{\text{start}}}}\; \right\rfloor \\ \nonumber & \bar{n}_{\text{shift}}^{\text{RA}}=\max \left( \left\lfloor {({ {L}_{\text{RA}}}-2{ {d}_{u}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}})}/{ { {N}_{\text{CS}}}}\; \right\rfloor ,0 \right) \end{align} \]

  • 对于 ${ { {L}_{}}}/{3};/{2}; $

\[ \begin{align} \nonumber & n_{\text{shift}}^{\text{RA}}=\left\lfloor {({ {L}_{\text{RA}}}-2{ {d}_{u}})}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & { {d}_{\text{start}}}={ {L}_{\text{RA}}}-2{ {d}_{u}}+n_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & n_{\text{group}}^{\text{RA}}=\left\lfloor { { {d}_{u}}}/{ { {d}_{\text{start}}}}\; \right\rfloor \\ \nonumber & \bar{n}_{\text{shift}}^{\text{RA}}=\min \left( \max \left( \left\lfloor {({ {d}_{u}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}})}/{ { {N}_{\text{CS}}}}\; \right\rfloor ,0 \right),n_{\text{shift}}^{\text{RA}} \right) \end{align} \]

对于受限集合类型B,参数规定为:

  • 对于$ { {N}{}}<{ { {L}{}}}/{5}; $

\[ \begin{align} \nonumber & n_{\text{shift}}^{\text{RA}}=\left\lfloor { { {d}_{u}}}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & { {d}_{\text{start}}}=4{ {d}_{u}}+n_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & n_{\text{group}}^{\text{RA}}=\left\lfloor { { {L}_{\text{RA}}}}/{ { {d}_{\text{start}}}}\; \right\rfloor \\ \nonumber & \bar{n}_{\text{shift}}^{\text{RA}}=\max \left( \left\lfloor {({ {L}_{\text{RA}}}-4{ {d}_{u}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}})}/{ { {N}_{\text{CS}}}}\; \right\rfloor ,0 \right) \end{align} \]

  • 对于$ { { {L}_{}}}/{5};/{}; $

\[ \begin{align} \nonumber & n_{\text{shift}}^{\text{RA}}=\left\lfloor {\left( { {L}_{\text{RA}}}-4{ {d}_{u}} \right)}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & { {d}_{\text{start}}}={ {L}_{\text{RA}}}-4{ {d}_{u}}+n_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & n_{\text{group}}^{\text{RA}}=\left\lfloor { { {d}_{u}}}/{ { {d}_{\text{start}}}}\; \right\rfloor \\ \nonumber & \bar{n}_{\text{shift}}^{\text{RA}}=\min \left( \max \left( \left\lfloor {({ {d}_{u}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}})}/{ { {N}_{\text{CS}}}}\; \right\rfloor ,0 \right),n_{\text{shift}}^{\text{RA}} \right) \end{align} \]

  • 对于$ {({ {L}{}}+{ {N}{}})}/{4};<{2{ {L}_{}}}/{7}; $

\[ \begin{align} \nonumber & n_{\text{shift}}^{\text{RA}}=\left\lfloor {(4{ {d}_{u}}-{ {L}_{\text{RA}}})}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & { {d}_{\text{start}}}=4{ {d}_{u}}-{ {L}_{\text{RA}}}+n_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & { { {\bar{\bar{d}}}}_{\text{start}}}={ {L}_{\text{RA}}}-3{ {d}_{u}}+n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}}+\bar{n}_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & { { {\bar{\bar{\bar{d}}}}}_{\text{start}}}={ {L}_{\text{RA}}}-2{ {d}_{u}}+n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}}+\bar{\bar{n}}_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & n_{\text{group}}^{\text{RA}}=\left\lfloor { { {d}_{u}}}/{ { {d}_{\text{start}}}}\; \right\rfloor \\ \nonumber & \bar{n}_{\text{shift}}^{\text{RA}}=\max \left( \left\lfloor {\left( { {L}_{\text{RA}}}-3{ {d}_{u}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}} \right)}/{ { {N}_{\text{CS}}}}\; \right\rfloor ,0 \right) \\ \nonumber & \bar{\bar{n}}_{\text{shift}}^{\text{RA}}=\left\lfloor {\min \left( { {d}_{u}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}},4{ {d}_{u}}-{ {L}_{\text{RA}}}-\bar{n}_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \right)}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & \bar{\bar{\bar{n}}}_{\text{shift}}^{\text{RA}}=\left\lfloor {\left( \left( 1-\min \left( 1,\bar{n}_{\text{shift}}^{\text{RA}} \right) \right)\left( { {d}_{u}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}} \right)+\min \left( 1,\bar{n}_{\text{shift}}^{\text{RA}} \right)\left( 4{ {d}_{u}}-{ {L}_{\text{RA}}}-\bar{n}_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \right) \right)}/{ { {N}_{\text{CS}}}}\; \right\rfloor -\bar{\bar{n}}_{\text{shift}}^{\text{RA}} \end{align} \]

  • 对于$ {2{ {L}_{}}}/{7};/{3}; $

\[ \begin{align} \nonumber & n_{\text{shift}}^{\text{RA}}=\left\lfloor {({ {L}_{\text{RA}}}-3{ {d}_{u}})}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & { {d}_{\text{start}}}={ {L}_{\text{RA}}}-3{ {d}_{u}}+n_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & { { {\bar{\bar{d}}}}_{\text{start}}}={ {d}_{u}}+n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}}+\bar{n}_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & { { {\bar{\bar{\bar{d}}}}}_{\text{start}}}=0 \\ \nonumber & n_{\text{group}}^{\text{RA}}=\left\lfloor { { {d}_{u}}}/{ { {d}_{\text{start}}}}\; \right\rfloor \\ \nonumber & \bar{n}_{\text{shift}}^{\text{RA}}=\max \left( \left\lfloor {\left( 4{ {d}_{u}}-{ {L}_{\text{RA}}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}} \right)}/{ { {N}_{\text{CS}}}}\; \right\rfloor ,0 \right) \\ \nonumber & \bar{\bar{n}}_{\text{shift}}^{\text{RA}}=\left\lfloor {\min \left( { {d}_{u}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}},{ {L}_{\text{RA}}}-3{ {d}_{u}}-\bar{n}_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \right)}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & \bar{\bar{\bar{n}}}_{\text{shift}}^{\text{RA}}=0 \end{align} \]

  • 对于$ {({ {L}{}}+{ {N}{}})}/{3};<{2{ {L}_{}}}/{5}; $

\[ \begin{align} \nonumber & n_{\text{shift}}^{\text{RA}}=\left\lfloor {(3{ {d}_{u}}-{ {N}_{\text{ZC}}})}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & { {d}_{\text{start}}}=3{ {d}_{u}}-{ {N}_{\text{ZC}}}+n_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & { { {\bar{\bar{d}}}}_{\text{start}}}=0 \\ \nonumber & { { {\bar{\bar{\bar{d}}}}}_{\text{start}}}=0 \\ \nonumber & n_{\text{group}}^{\text{RA}}=\left\lfloor { { {d}_{u}}}/{ { {d}_{\text{start}}}}\; \right\rfloor \\ \nonumber & \bar{n}_{\text{shift}}^{\text{RA}}=\max \left( \left\lfloor {\left( { {L}_{\text{RA}}}-2{ {d}_{u}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}} \right)}/{ { {N}_{\text{CS}}}}\; \right\rfloor ,0 \right) \\ \nonumber & \bar{\bar{n}}_{\text{shift}}^{\text{RA}}=0 \\ \nonumber & \bar{\bar{\bar{n}}}_{\text{shift}}^{\text{RA}}=0 \end{align} \]

  • 对于$ {2{ {L}_{}}}/{5};/{2}; $

\[ \begin{align} \nonumber & n_{\text{shift}}^{\text{RA}}=\left\lfloor {({ {N}_{\text{ZC}}}-2{ {d}_{u}})}/{ { {N}_{\text{CS}}}}\; \right\rfloor \\ \nonumber & { {d}_{\text{start}}}=2({ {N}_{\text{ZC}}}-2{ {d}_{u}})+n_{\text{shift}}^{\text{RA}}{ {N}_{\text{CS}}} \\ \nonumber & { { {\bar{\bar{d}}}}_{\text{start}}}=0 \\ \nonumber & { { {\bar{\bar{\bar{d}}}}}_{\text{start}}}=0 \\ \nonumber & n_{\text{group}}^{\text{RA}}=\left\lfloor {({ {L}_{\text{RA}}}-{ {d}_{u}})}/{ { {d}_{\text{start}}}}\; \right\rfloor \\ \nonumber & \bar{n}_{\text{shift}}^{\text{RA}}=\max \left( \left\lfloor {\left( 3{ {d}_{u}}-{ {L}_{\text{RA}}}-n_{\text{group}}^{\text{RA}}{ {d}_{\text{start}}} \right)}/{ { {N}_{\text{CS}}}}\; \right\rfloor ,0 \right) \\ \nonumber & \bar{\bar{n}}_{\text{shift}}^{\text{RA}}=0 \\ \nonumber & \bar{\bar{\bar{n}}}_{\text{shift}}^{\text{RA}}=0 \end{align} \]

对于其他所有的$ { {d}_{u}} $值,受限集合不存在循环移位。

mark
mark
mark

映射到物理元素


前导序列应根据下式映射到物理资源

\[ \begin{align} \nonumber & a_{k}^{(p,\text{RA})}={ {\beta }_{\text{PRACH}}}{ {y}_{u,v}}(k) \\ \nonumber & k=0,1,...,{ {L}_{\text{RA}}}-1 \end{align} \]

其中$ { {}{}} \(是幅值因子,为满足TS 38.213规范对PRACH传输功率\) { {P}{}} \(的要求,前导序列应乘以\) { {}_{}} \(,\) p=4000 $是天线端口。基带信号应根据2.3节使用Table 6.3.3.1-1或Table 6.3.3.1-2的参数生成。

物理信号

参考信号

用于PUSCH的DM-RS

序列生成


若对PUSCH的转换预编码不启用,则参考信号序列$ r(m) $根据下式生成

\[ r(m)=\frac{1}{\sqrt{2}}\left( 1-2\cdot c(2m) \right)+j\frac{1}{\sqrt{2}}\left( 1-2\cdot c(2m+1) \right) \]

其中伪随机序列$ c(i) $在《NR物理信道与调制》2.2节中定义。

若对PUSCH的转换预编码启用,则参考信息$ r(m) $根据下式生成

\[ r(m)={ {e}^{-j\frac{\pi qm(m+1)}{L}}} \]

Note: Agreement says “Support ZC-sequence for UL DFT-S-OFDM DMRS” but unclear if this refers to the sequences in LTE (ZC-derived/computer generated) or “pure” ZC.

资源映射


PUSCH DM-RS根据type 1或type 2映射到物理资源,DM-RS的类型由高层参数UL-DMRS-config-type给定。

UE应根据以下规则将序列$ r(m) $映射到REs

  • if transform precoding is not enabled,

\[ \begin{align} \nonumber & a_{k,l}^{(p,\mu )}={ {\beta }_{\text{DMRS}}}{ {w}_{\text{f}}}\left( { {k}'} \right)\cdot { {w}_{\text{t}}}\left( { {l}'} \right)\cdot r\left( 2m+{k}'+{ {m}_{0}} \right) \\ \nonumber & k=\left\{ \begin{matrix} { {k}_{\text{0}}}+4m+2{k}'+\Delta & \text{Configuration type 1} \\ { {k}_{\text{0}}}+6m+{k}'+\Delta & \text{Configuration type 2} \\ \end{matrix} \right. \\ \nonumber & {k}'=0,1 \\ \nonumber & l=\bar{l}+{l}' \end{align} \]

  • if transform precoding is enabled

\[ \begin{align} \nonumber & a_{k,l}^{(p,\mu )}={ {\beta }_{\text{DMRS}}}{ {w}_{\text{f}}}\left( { {k}'} \right)\cdot { {w}_{\text{t}}}\left( { {l}'} \right)\cdot r\left( 2m+{k}'+{ {m}_{0}} \right) \\ \nonumber & k={ {k}_{\text{0}}}+4m+2{k}'+\Delta \\ \nonumber & {k}'=0,1 \\ \nonumber & l=\bar{l}+{l}' \end{align} \]

其中\(l\)是指相对于PUSCH传输的起始,$ { {w}{}}( { {k}'} ) \(,\) { {w}{}}( { {k}'} ) \(,和\) $在Tables 6.4.1.1.2-1 and 6.4.1.1.2-2中给定。

时域索引$ {l}' \(和所支持的天线端口\)p$根据Table 6.4.1.1.2-3中的DM-RS duration确定。

mark
mark

相位跟踪参考信号

序列生成
资源映射

用于PUCCH的DM-RS

用于PUCCH格式1的DM-RS

探测参考信号

序列生成


探测参考信号序列根据下式生成

\[ r\left( m \right)=r_{u,v}^{(\alpha )}\left( m \right) \]

其中$ r_{u,v}^{()}( n ) $]由XXX给定。

资源映射


探测参考信号应在上行天线端口$ 3000+i \(上发送,其中\) i \(是\) i=0 \(或\) i=0,1 \(或\) i=0,1,2,3 $其中之一。

相关链接


NR物理层概述 NR物理层提供的服务 NR物理信道与调制 NR复用与信道编码 NR物理层过程(控制)